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A completely spectral algorithm for analysis of flows over corrugated boundaries
is proposed. The algorithm treats the flow problem as an internal rather then a bound-
ary value problem, where the flow conditions are specified along a line in the interior
of the computational domain. The method eliminates the need for a coordinate gen-
eration and/or premapping required for regularization of the computational domain
in standard implementations of spectral discretizations. Various tests confirm the
spectral accuracy of the algorithm.c© 1999 Academic Press

1. INTRODUCTION

Flows over corrugated boundaries are of interest in many applications. Good examples
are the use of grooved surfaces in reduction of skin friction drag [8, 9], high-efficiency
membrane oxygenerators [11], analysis of the process of wave growth under the action
of wind [4], and analysis of the laminar–turbulent transition process in flows over rough
surfaces [5], among others. The main difficulty in simulation of such flows is associated
with treatment of boundary conditions on a geometrically irregular boundary.

There are two main approaches available in the literature. The first one, which we shall
refer to as the domain perturbation, involves transfer of boundary conditions to a certain
mean location, resulting in a regular computational domain. The accuracy of the domain
perturbation depends on the type of boundary condition transfer procedure. The applicability
of the first-order procedure, which is well described in [7] in the context of flow over a
rough leading edge, is limited to situations where the boundary corrugations produce flow
modifications that can be described by a linear theory.

The second approach involves construction of a coordinate system where one of the
coordinate lines overlaps with the corrugated boundary. Sobey [11] analyzed furrowed
periodic channels and used an analytical mapping resulting in a non-orthogonal reference
system. Caponiet al. [4] employed an orthogonal transformation expressed in terms of
an infinite series in their analysis of boundary layers over wavy surfaces. Benjamin [2]
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considered a coordinate system based on streamlines of an inviscid flow over a wavy wall
in his analysis of shear flows over wavy walls. Balasubranian and Orszag [1] employed
numerically generated conformal mapping in their simulations of flows over wavy walls.

Other possible approaches include a full range of numerical coordinate generation pro-
cedures [12], unstructured domain decomposition methods [10], and numerical conformal
mapping specifically tuned to periodic geometries [6]. The last two methodologies have
been extended to higher-order accuracy [6, 10]. Lack of spectrally accurate grid generation
techniques, however, limits the development of spectrally accurate algorithms. Neverthe-
less, one may combine any grid generation technique with the spectral discretization of the
field equations as done, for example, in [1].

The main goal of the present analysis is the development of a fully spectral algorithm
capable of simulating flows over corrugated boundaries. This is achieved by posing the
numerical problem as an internal problem rather than a boundary value problem. The
computational domain is larger than the flow domain and completely surrounds it. The
flow boundary conditions are imposed along a line that weaves through the interior of the
computational domain; i.e., the boundaries of the flow and computational domains do not
necessarily coincide.

This paper is organized as follows. Section 2 describes a model problem, which is used
to illustrate the algorithm. Section 3 provides a description of the algorithm. Section 4
discusses results of various numerical tests. Section 5 provides a short summary of the main
conclusions.

2. PROBLEM FORMULATION

We shall describe our algorithm in the context of a convenient model problem. The
selected model problem consists of a viscous flow driven by a pressure gradient through a
channel with corrugated walls.

2.1. Reference Flow

Consider plane Poiseuille flow confined between flat rigid walls aty=±1 and extending
to infinity in the x-direction (Fig. 1a). The fluid motion is described by the velocity and
pressure fields

V̄0(x̄) = [u0(x, y), v0(x, y)] = [u0(y), 0] = [1− y2, 0], p0(x̄) = −2x/Re, (2.1)

where the fluid is directed towards the positivex-axis, and the Reynolds number Re is based
on the half-channel height and the maximumx-velocity. This flow is driven by a constant
negative pressure gradient.

2.2. Flow in a Corrugated Channel

Consider the upper and lower walls to have arbitrary shapes described byyU (x) and
yL(x) (Fig. 1b), respectively, and characterized by a certain periodicity with wavelength
λx = 2π/α. The shape of the walls can be expressed in terms of Fourier series in the form

yL(x) =
n=∞∑

n=−∞
(An)Leinαx, yU (x) =

n=∞∑
n=−∞

(An)U einαx, (2.2)
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FIG. 1. Sketch of the flow domain. (a) Straight (reference) channel. (b) Channel with corrugated walls. The
flow domain (dotted area) forms a subset of the rectangular domain.

where(A0)L =−1+ HL , (A0)U = 1− HU , and(An)L = (A−n)
?
L and (An)U = (A−n)

?
U in

order for yU (x) and yL(x) to be real, and the star denotes the complex conjugate. The
subscriptL refers to the bottom wall, while the subscriptU refers to the upper wall of the
channel. In addition, it is assumed that

min
0≤x≤2π/α

yL(x) ≥ −1, max
0≤x≤2π/α

yU (x) ≤ 1,

i.e., the flow domain is bounded by−∞< x<∞,−1≤ y≤ 1 (see Fig. 1b). The flow in
the channel can be represented as

V̄(x̄) = [u(x, y), v(x, y)] = V̄0(x̄)+ V̄1(x̄)

= [u0(y), 0]+ [u1(x, y), v1(x, y)], p(x̄) = p0(x̄)+ p1(x̄), (2.3)

whereV̄1 and p1 are the velocity and pressure modifications due to the presence of wall
corrugations. Substitution of the above representation of the flow quantities into the Navier–
Stokes and continuity equations results in the following form of the governing equations,

u0∂xu1+ u1∂xu1+ v1Du0+ v1∂yu1 = −∂x p1+ 1

Re
(∂xxu1+ ∂yyu1),

(2.4)

u0∂xv1+ u1∂xv1+ v1∂yv1 = −∂y p1+ 1

Re
(∂xxv1+ ∂yyv1), ∂xu1+ ∂yv1 = 0,
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where the symbol∂ denotes partial differentiation, subscriptsx andy denote the arguments
of partial differentiations, andD= d/dy. Introduction of the stream function defined as

u1 = ∂y9, v1 = −∂x9,

and elimination of pressure permits expression of the field equations (2.4) in the form

(u0∂x + ∂y9∂x − ∂x9∂y)19 − D2u0∂x9 = 1

Re
129, (2.5)

where1 denotes the Laplace operator. Sinceu1 andv1 are periodic inx with the period
λx = 2π/α, the stream function can be represented as

9(x, y) =
n=+∞∑
n=−∞

8n(y)e
inαx, (2.6)

where8n=8?
−n. In general, one cannot exclude the possibility that subharmonics exist

in the velocity field. Their presence, however, can be accounted for by a simple change of
indices in (2.6). No subharmonics were found for parameter ranges used in the numerical
tests (see discussion in Section 4).

The functions8n, n≥ 0, in (2.6) are governed by a nonlinear system of ordinary differ-
ential equations in the form[

D2
n − inαRe

(
u0Dn − D2u0

)]
8n

− iαRe
k=+∞∑
k=−∞

[kD8n−k Dk8k − (n− k)8n−k Dk D8k] = 0, (2.7)

whereDn= D2− n2α2. Equation (2.7) has been obtained by substituting (2.6) into (2.5)
and separating Fourier components.

The boundary conditions at the channel walls are expressed in the form

u0(yL(x))+ u1(x, yL(x)) = 0 and v1(x, yL(x)) = 0 at y= yL(x),
(2.8)

u0(yU (x))+ u1(x, yU (x)) = 0 and v1(x, yU (x)) = 0 at y= yU (x).

The numerical implementation of these conditions is discussed in the next section.
Problem formulation is closed by specifying two additional conditions. The first condition

is associated with the introduction of the stream function and can be selected arbitrarily
without affecting the generality of the formulation. The second condition arises due to
the fact that anx-periodic velocity field may be associated with a pressure field that has
a component linear inx. For simplification of physical interpretation of the results, this
condition can be cast in terms of the volume flux, in terms of the pressure gradient, or in
terms of any combination of both of them. The condition based on the volume flux has been
selected for presentation of the algorithm due to its simplicity. This condition involves only
kinematic characteristics of the flow and can be cast as

90(yL(x))+9(x, yL(x)) = T, 90(yU (x))+9(x, yU (x)) = T + Q0, (2.9)

where90 denotes the stream function of the Poiseuille flow(90(−1) = 0), Q0 stands
for the (specified) volume flux, andT denotes an arbitrary constant. In all calculations
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presented, the volume flux in the corrugated channel has been set asQ0= 4
3, i.e., it is the

same as the volume flux in the straight channel.

3. NUMERICAL DISCRETIZATION METHOD

The problem to be solved numerically consists of an infinite system of nonlinear ordi-
nary differential equations (2.7) subject to boundary conditions (2.8)–(2.9). This section is
devoted primarily to describing the numerical discretization of the above problem.

As a first step, the representation of the stream function of the flow modifications9 is
truncated toM leading Fourier modes, i.e.,

9(x, y) ≈
n=M∑

n=−M

8n(y)e
inαx. (3.1)

The corresponding, finite dimensional system of the ordinary differential equations for the
functions8n, n= 0, 1, . . . ,M , can easily be written on the basis of Eq. (2.7). This system
can be discretized with spectral accuracy by introducing Chebyshev representations of the
unknown function8n,

8n(y) =
j=∞∑
j=0

Gn
j Tj (y) ≈

j=K∑
j=0

Gn
j Tj (y), (3.2)

whereTj denotes the Chebyshev polynomial of thej th order andGn
j stands for the unknown

expansion coefficient. The Chebyshev representations of the required derivativesDl8 (with
l up tol = 4) can be determined using a recursive algorithm described on p. 62 in [3].

Thenth equation of our system can be written in a general form as

4n(80,81, . . . , 8M) = 0 for n = 0, . . . ,M. (3.3)

The substitution of the Chebyshev expansions (3.2) and their derivatives into (3.3) gives
the residual function

Rn = 4n

 j=K∑
j=0

G0
j Tj ,

j=K∑
j=0

G1
j Tj , . . . ,

j=K∑
j=0

GM
j Tj

, n = 0, . . . ,M. (3.4)

The problem is converted to an algebraic, nonlinear system by imposing the orthogonality
conditions

〈Rn, Tj 〉ω = 0, j = 0, . . . , K − 4, n = 0, . . . ,M. (3.5)

The inner product used in (3.5) is defined as

〈 f, g〉ω :=
1∫
−1

f (x)g(x)ω(x) dx, ω(x) = (1− x2)−1/2.
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Since the orthogonality properties of Chebyshev polynomials

〈Tm, Tn〉ω = 0 for m 6= n and 〈Tm, Tm〉ω =
{
π for m= 0
π/2 for m> 0

take place, conditions (3.5) ensure a spectral rate of convergence with respect to the trun-
cation thresholdK in the expansions (3.2) provided that the solution being approximated
is smooth.

The discretization method described above can be viewed as a variant of the Chebyshev-
tau technique. The reader should note that the projection is carried out onto the linear
subspace spanned by the Chebyshev polynomials with the order of up toK-4. The additional
equations required to close the system are due to flow boundary conditions (2.8) and volume
flux conditions (2.9).

Numerical treatment of flow boundary conditions, which are to be enforced along the
lines yL(x) andyU (x), poses a challenge and, at the same time, represents unique features
of the proposed method. To explain the current approach to the boundary conditions we
evaluate velocity componentsul (x)= u(x, f (x)) andvl (x)= v(x, f (x)) along an arbitrary
line l :={(x, y) : y= f (x)}, such that the functionf is periodic with the periodλx = 2π/α,
and | f (x)| ≤1. This function can be expressed, without loss of generality, as a Fourier
expansion in the form

f (x) =
n=NA∑

n=−NA

Aneinαx. (3.6)

The number of termsNA is arbitrary, however; only expansions with a finite number of
terms can be handled in the actual computations. Both velocity componentsul andvl are
x-periodic functions, with the same periodλx , and thus can be expressed in terms of Fourier
series as

ul (x) ≡ u(x, f (x)) =
n=NU∑

n=−NU

Uneinαx, vl (x) ≡ v(x, f (x)) =
n=NU∑

n=−NU

Vneinαx. (3.7)

The lengths of these expansions can be calculated easily by noting that each modal shape
function8n is approximated by a polynomial of orderK which leads toNU = K · NA+M .
In general,NU >M unlessK = 0, which is clearly unacceptable.

The same velocity components can also be expressed using the discretized form of the
solution, i.e.,

ul (x) ≡ u(x, f (x)) ∼= u0( f (x))+
n=M∑

n=−M

D8n( f (x))einαx

= u0( f (x))+
n=M∑

n=−M

j=K∑
j=0

Gn
j DTj ( f (x))einαx (3.8a)

vl (x) ≡ v(x, f (x)) ∼= −iα
n=M∑

n=−M

n8n( f (x))einαx = −iα
n=M∑

n=−M

j=K∑
j=0

nGn
j Tj ( f (x))einαx.

(3.8b)
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Comparison of (3.7) and (3.8) permits specification of flow boundary conditions for each
Fourier mode in terms of the unknown coefficients of the Chebyshev expansions.

Substitution of (3.6) into (3.8) shows a need for evaluation ofTj ( f (x)) andDTj ( f (x)).
Both these functions are periodic inx and can be expressed using the Fourier expansions

Tj ( f (x)) =
k=∞∑

k=−∞
w

j
keikαx, DTj ( f (x)) =

k=∞∑
k=−∞

d j
k eikαx. (3.9)

Use of the well-known recurrence relation for the Chebyshev polynomials

Tj+1(y) = 2yTj (y)− Tj−1(y) (3.10)

leads to the following expressions for the coefficients ofTj+1( f (x)):

w
j+1
k = 2

s=∞∑
s=−∞

Akw
j
k−s − w j−1

k . (3.11)

The evaluations of these coefficients begins with

w0
0 = 1, w0

k = 0 for k ≥ 1; w1
0 = A0, w1

k = Ak for k ≥ 1.

The differentiation of the general formula (3.10) yields

DTj+1(y) = 2Tj (y)+ 2yDTj (y)− DTj−1(y) (3.12)

and leads to the following recurrence relation for the Fourier coefficients ofDTj+1( f (x)),

d j+1
k = 2

s=∞∑
s=−∞

Asd
j
k+s − d j−1

k + 2w j
k , (3.13)

whose evaluation is initiated with

d0
k = 0 fork ≥ 0; d1

0 = 1, d1
k = 0 fork ≥ 1; d2

0 = 4A0, d2
k = Ak fork ≥ 1.

Substitution of (3.9) into (3.2) leads to the Fourier expansions

8n( f (x)) =
k=∞∑

k=−∞

j=K∑
j=0

Gn
jw

j
keikαx, (3.14a)

D8n( f (x)) =
k=∞∑

k=−∞

j=K∑
j=0

Gn
j d

j
k eikαx, (3.14b)

Insertion of (3.14) into (3.8) and separation of the Fourier modes result in the explicit
expressions for coefficients of Fourier expansions (3.7), i.e.,

Un = Fn +
m=M∑

m=−M

j=K∑
j=0

d j
n−mGm

j , (3.15a)

Vn = −iα
m=M∑

m=−M

j=K∑
j=0

mw j
n−mGm

j . (3.15b)
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The complex quantitiesFn, n= 0, 1, . . . , are the Fourier coefficients of the reference flow
u0 calculated along the linel , i.e.,

u0( f (x)) =
n=∞∑

n=−∞
Fneinαx. (3.16)

In the case of the Poiseuille flow, the Fourier coefficients have the form

F0 = 1−
j=NA∑

j=−NA

|Aj |2, Fn = −
j=NA∑

j=−NA

Aj An− j , (3.17)

The actual range of the summation in (3.16) is±2 · NA.
Let velocity field satisfy the following conditions imposed at the linel ,

ul (x) ≡ u(x, f (x)) = gu(x), vl (x) ≡ v(x, f (x)) = gv(x), (3.18)

wheregu andgv are given, periodic functions with the periodλx, which can be expressed,
without loss of generality, as the Fourier expansions

gu(x) =
n=NP∑

n=−NP

Pneinαx, gv(x) =
n=NP∑

n=−NP

Rneinαx. (3.19)

The number of terms in both of these expansions can be specified arbitrarily and has been
assumed to be the same without loss of generality. In terms of the theory of square-integrable
functions, conditions (3.18) are equivalent to the integral conditions

x+λx∫
x

[ul (x)− gu(x)]e
−inαx dx = 0,

x+λx∫
x

[vl (x)− gv(x)]e
−inαx dx = 0, |n| ≥ 0

and can be expressed as

Un = Pn, Vn = Rn, n ≥ 0. (3.20)

Typically, one would select the firstM + 1 conditions forUn andVn to close the system
(3.5). We shall demonstrate that not all of conditions (3.20) are independent, however,
and that specification of velocity components along the linel in (3.19) is not completely
arbitrary, but has to satisfy a certain constraint.

Letψ denote the stream function of the flow in the corrugated channel, i.e.,ψ =90+9,
where90 denotes the stream function of the reference flow. We can evaluateψ along the line
l , i.e.,ψl (x)=ψ(x, f (x)). Clearly,ψl is a periodic function ofx, i.e.,ψl (x)=ψl (x+ λx).
One can write the equality

ψl (x + λx)− ψl (x) =
x+λx∫
x

dψl (x)

dx
dx = 0, (3.21)
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which, after differentiation ofψl as a composed function, yields

x+λx∫
x

{
∂ψ

∂x
(x, f (x))+ ∂ψ

∂y
(x, f (x)) · f ′(x)

}
dx = 0. (3.22)

The above formula can be rewritten in terms of velocity components specified at the linel
as

x+λx∫
x

{−gv(x)+ gu(x) · f ′(x)} dx = 0. (3.23)

Substitution of (3.6) and (3.19) into (3.23) and integration of the resulting expression results
in

R0 = −iα
n=NA∑

n=−NA

nPn A?n. (3.24)

The above shows that the mean value ofgv, i.e.,R0, cannot be specified arbitrarily; this value
results from specification ofgu as well as shape of the linef (x), i.e., An. The summation
in (3.24) extends betweenn=±min(NP, NA). SinceNP can be extended arbitrarily (i.e.,
the length of the Fourier expansions (3.19) can be arbitrarily increased by adding to them
null terms), the limits of the summation are written as±NA.

Similar arguments withgu andgv in (3.23) replaced byul andvl , respectively, and with
use of (3.7), lead to the conclusion that

V0 = −iα
n=NA∑

n=−NA

nUn A?n. (3.25)

The above relation shows thatV0 is not an independent quantity but results from specification
of Un. The summation in (3.25) extends betweenn=±min(NU , NA). SinceNU > NA, the
limits of the summation are written as±NA.

The flow boundary conditions can now be written as

Un = Fn +
m=M∑

m=−M

j=K∑
j=0

d j
n−mGm

j = Pn, M ≥ n ≥ 0, (3.26a)

Vn = −iα
m=M∑

m=−M

j=K∑
j=0

mw j
n−mGm

j = Rn, M ≥ n ≥ 1. (3.26b)

It can be shown that in the case of numerical implementation, when the calculations are
carried out with the use ofM Fourier modes for the stream function, the conditionV0= R0

is automatically satisfied whenM ≥ NP. If M < NP but NA≤M , again this condition is
automatically satisfied. Otherwise

R0 = V0−
(

iα
n=NA∑

n=M+1

nPn A?n + c.c.

)
, (3.27)
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which leads to a contradiction. Here, c.c. stands for the complex conjugate. The above
discussion shows that, regardless of circumstances, no condition forV0 can be imposed.
One may note that in practical calculations an accurate solution can be obtained only when
the lengthM of its Fourier representation (3.1) is larger than bothNA andNP. In such cases
the conditionV0= R0 is satisfied automatically.

Flow conditions (3.26) can be specified along any line periodic inx, and in particular,
along the top and bottom walls of the channel, i.e., atyU (x) and yL(x). The problem to
be solved numerically consists ofM + 1 fourth-order ordinary differential equations of
type (2.7) supplemented by Eq. (3.26) applied at the top and bottom walls, which provides
4 · (M + 1)− 2 out of the required 4· (M + 1) conditions necessary to close the system. The
reader may note that these conditions are of internal type rather than boundary type and,
indeed, no explicit relations between the values of the stream function and/or its derivatives
are postulated at the boundaries of the computational domain (i.e., aty=±1). Consequently,
our system of ordinary differential equations is not supplemented explicitly by boundary
conditions of any kind. The computed flow field extends over the whole computational
domain, but only the part contained between the wall contoursyU (x) and yL(x) has a
physical meaning.

Equations (3.26) provide useful relations for evaluation of error in enforcement of flow
conditions along the walls. Since bothUn andVn are defined for 0≤ n≤ NU (see Eq. (3.7))
but flow conditions are imposed only for 0≤ n≤M , the flow boundary conditions will not be
satisfied exactly. Evaluation of (3.26) forn>M gives information about the absolute value
as well as spectral composition of the error. Since the method is spectrally accurate, this
error should be decreasing exponentially with increasingM . The evaluation of the error
is computationally very inexpensive because it involves only substitution of the already
computed quantities. The simplicity in determination of the error permits a straightforward
implementation of the algorithm in a self-adaptive mode, where the number of Fourier
modes keeps increasing until the specified accuracy criteria are met.

To close the problem of flow through the channel, we need to specify two arbitrary
conditions. This need arises due to the dependence ofV0 on other coefficients of Fourier
expansions (3.7), as discussed above (see also discussion in Section 2). One of the required
conditions is selected by specifying the average value of the stream function at the lower
wall, i.e.,

s=M∑
s=−M

j=K∑
j=0

Gs
j

(
w j

s

)?
L = −(H0)L + T, (3.28)

where T is the selected average value of the stream function, the subscriptL denotes
the values corresponding to the lower wall, andHn stands for the coefficients of Fourier
expansion of the stream function of the reference flow, i.e.,

90( f (x)) ≈
n=M∑

n=−M

Hneinαx. (3.29)

The second condition is selected by specifying the average volume flux through the channel.
The volume fluxQ(x) is a periodic function ofx and can be represented as a Fourier
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expansion in the form

Q(x) ≈
n=M∑

n=−M

Qneinαx. (3.30)

The coefficientsQn can be evaluated by integrating thex-velocity componentu(x, y)=
u0(y)+ u1(x, y) across the channel, i.e.,

Q(x) =
yU∫

yL

(u0+ u1) dy= 90(yU (x))+9(yU (x))−90(yL(x))−9(yL(x)), (3.31)

and substituting the relevant expressions for90(x) and9(x). The final form of the volume
flux condition is

s=M∑
s=−M

j=K∑
j=0

Gs
j

(
w j

s

)?
U = Q0− (H0)U + T, (3.32)

whereQ0 stands for the specified average volume flux (see Eq. (2.9)) and the subscriptU
denotes values evaluated at the upper wall.

Discussion of the treatment for the flow boundary conditions has been carried out so far
in a rather general form that permits specification of bothx andy (or tangential and normal
to the wall) velocity components. In the case of a solid non-permeable wall considered in
Section 2, these conditions can be written in a simpler form, i.e.,

Fn +
m=M∑

m=−M

j=K∑
j=0

d j
n−mGm

j = 0, M ≥ n ≥ 0, (3.33a)

m=M∑
m=−M

j=K∑
j=0

mw j
n−mGm

j = 0, M ≥ n ≥ 1, (3.33b)

with (3.28) and (3.32) unchanged. In this case, the stream function is constant and equal to
T along the lower wall (see Eq. (2.9)).

Equations (3.5), (3.28), (3.22), and (3.33) form a complete nonlinear algebraic system
for the unknown coefficientsGn

j , j = 0, . . . , K , n= 0, . . . ,M . This system was solved it-
eratively by taking advantage of the structure of the original differential system. The reader
may note that the coupling between the differential equations (2.7) is only due to nonlinear
terms and that80 appears in these equations in a very special way. To illustrate this point,
we write Eqs. (2.7) in the form{

D2
n − inαRe

⌊
(u0+ D80)Dn − D2(u0+ D80)

⌋}
8n

= 2n(81,8
?
1,82,8

?
2, . . .), n ≥ 1, (3.34)

D480 = −2αRe Im

{ ∞∑
n=1

n
(
D8?

n D28n +8?
n D38n

)}
. (3.35)

The right-hand side of (3.34) contains the nonlinear terms but does not contain80 and8n.
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In the above, the modal functions with negative indices have been replaced by their complex
conjugates. The discrete system (3.5) supplemented by (3.28.), (3.32), and (3.33) can be
written in analogous form as

LnGn = Rn
(
G1

0,G
1
1, . . . ,G

1
K ; . . . ;Gn−1

0 ,Gn−1
1 , . . . ,Gn−1

K ;
Gn+1

0 ,Gn+1
1 , . . . ,Gn+1

K ; . . . ;GM
0 ,G

M
1 , . . . ,G

M
K

)
, n = 0, . . . ,M. (3.36)

In the above,Ln denotes the discretization matrix of the linear differential operators from
the left-hand side of (3.34) (forn≥ 1) and (3.35) (forn= 0). This matrix also includes four
rows containing coefficients corresponding toGn

0, . . . ,G
n
K in (3.28), (3,32), and (3.33).Gn

stands for the vector of the unknown Chebyshev coefficientsGn
0, . . . ,G

n
k. Rn stands for the

vector corresponding to discretization of the nonlinear operator2n. This vector includes
four entries corresponding to the parts of (3.28), (3,32), and (3.33) that are not included
in Ln. The above form of the discretized system demonstrates that the linear part of (3.5),
(3.28), (3.32), and (3.33) can be split intoM + 1 separate linear subsystems, assuming that
the couplings due to nonlinearity and due to boundary conditions (which are placed in the
right-hand side vectors) are known. In this study, the right-hand sides were calculated using
information from the previous iteration and the subsystems were solved in descending order
starting with the subsystem corresponding ton=M . The iterations were continued until the
change in the magnitude of the modal functions was less than the prescribed convergence
criterion ε. Most of the results presented in this paper were obtained with the machine
accuracy level and thus the convergence criterion was set to beε= 10−14. The number of
the required iterations in most cases would be less than 50. The Chebyshev representations
of the nonlinear terms were calculated directly using exact formulas for manipulation of
Chebyshev polynomials. In general, the number of Fourier modes required to produce a
solution with the desired accuracy (machine accuracy in this case) is not known in advance.
The computations were thus carried out in a self-adaptive mode, where the solution would
be recomputed with the increasing number of modesM until the norm of the highest modal
function reached a magnitude smaller than the desired accuracy (machine accuracy in the
present case). This “continuation strategy” usually reduces efficiency of the calculations
but improves convergence properties of the iterative scheme.

The implementation of the algorithm described in this paper involves subtraction of the
reference flow, e.g., Eq. (2.3). This step is not required in general and a version of the
algorithm that solves for the complete flow can be easily worked out.

4. TESTING OF THE ALGORITHM

In this section, we shall discuss the results of numerical testing of the algorithm. We shall
demonstrate the spectral accuracy of the flow field approximation and discuss how changes
of different available parameters affects this accuracy. All tests discussed have been carried
out for the Reynolds number Re= 100 unless otherwise noted. For simplicity, the upper
wall of the channel has been assumed to be flat, i.e.,yU = 1, while the shape of the bottom
wall has been taken as

yL(x) = −1+ HL + HL · cos(αx), (4.1)
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i.e., it contains only one Fourier mode. The reader may note that the shape of the bottom
wall is completely described by two parameters, i.e., the wavenumberα and the amplitude
HL . It is of interest to know how the variations ofHL andα can affect the absolute accuracy
of the calculations.

In order to demonstrate the spectral accuracy of the algorithm, two aspects of the approx-
imation should be considered. For they-direction, the Chebyshev expansions (3.2) with
coefficients calculated from the Galerkin conditions (3.5) are guaranteed to be spectrally
accurate with the increasing number of termsK . We have found that in most cases sixty
Chebyshev polynomials provided machine accuracy. This number needs to be increased for
α→∞ (shorter waves), especially when higher Fourier modes begin to play a significant
role in the solution. This need for an increased number of Chebyshev polynomials under
such conditions can be explained by noting that each amplitude function8n develops a
boundary layer neary=−1 asα→∞. These layers are extremely thin for larger values
of α and for higher Fourier modes (see Fig. 2). Inside the layers the functions8n and their
derivatives change rapidly, while in the rest of the domain they assume values very close
to zero. In order to obtain the required resolution neary=−1, and in order to avoid the
(numerical) oscillations in the distributions of8n outside the boundary layers, the truncated
Chebyshev expansions (3.2) must contain a larger number of terms. Typically,K ≈ 80 for
α= 20, andK ≈ 160 forα= 50.

The second aspect of the spectral accuracy involves the convergence of the truncated
Fourier series describingx-variations of the flow field. In all tests dealing with this issue,
the number of Chebyshev polynomialsK was kept sufficiently large so that the associated
discretization error was reduced to machine accuracy level. The errors to be discussed below

FIG. 2. Distribution of the real part of the derivative of the amplitude functionD8n as a function ofy for
higher modes(n> 11) in the area close to the lower wall forα= 10 andHL = 0.025. Formation of boundary
layers, which are completely contained within a strip of thickness equal to the maximum height of the corrugation
(i.e., 2HL ), is clearly visible for each amplitude function.
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FIG. 3. Variations of the Chebyshev norm (4.2) of the derivativeD8n as a function of the mode numbern
for α= 1. Calculations have been carried out withM = 20 Fourier modes.

occur solely due to truncation of the Fourier series.
Figure 3 displays variations of the Chebyshev norm of the first derivative of the amplitude

functionD8n as a function of the Fourier mode numbern. The norm decreases as a function
of n with the rate of the decrease very rapidly reaching (asymptotically) exponential form.
The Chebyshev norm used in the testing is defined as

‖D8n‖ω =


1∫
−1

D8n(y) · D8?
n(y)ω(y) dy


1/2

, (4.2)

whereω denotes the Chebyshev weight functionω(x)= (1− x2)1/2. The derivativesD8n

rather then the functions8n have been selected as the test quantities because they directly
correspond to the Fourier representation of thex-component of velocity vector.

The accuracy of enforcement of flow boundary conditions (2.8) is crucial for the proposed
algorithm. Components of velocity vector evaluated at the lower walluL(x)≡ u(x, yL(x))
and vL(x)≡ v(x, yL(x)) should satisfy conditions (2.8). However, in numerical imple-
mentation only the firstM Fourier modes are set to zero, as discussed in Section 3 (see
Eq. (3.33)). The rest of the available Fourier modes (forM + 1≤ n≤ NU ) evaluated at the
lower wall provide a convenient measure of the magnitude and spectral composition of the
error. This error can be evaluated easily from Eq. (3.15) through a simple substitution of
the already computed quantities. In the tests discussed below,uL andvL were computed
using 50 modes (M < 50< NU ), which was sufficient to provide machine accuracy.

The error in enforcement of flow boundary conditions can be measured by introducing two
norms, i.e., theL∞-norm and theL2-norm, and applying them to both velocity components
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evaluated at the lower wall. These norms are defined as

‖uL(x)‖∞ := sup
0≤x≤2π/α

|u(x, yL(x))|, ‖vL(x)‖∞ := sup
0≤x≤2π/α

|v(x, yL(x))|, (4.3a)

‖uL(x)‖2 :=
 x+λx∫

x

|u(x, yL(x))|2 dx

1/2

, ‖vL(x)‖2 :=
 x+λx∫

x

|v(x, yL(x))|2 dx

1/2

.

(4.3b)

The first norm is of greater interest in assessing the error of the method and thus is used
in the discussion that follows. The second norm gives qualitatively similar results with the
numerical values being approximately 10 times smaller than the corresponding values of
the first norm.

Figure 4 displays variations of‖uL‖∞ and‖vL‖∞ as a function of the total number of
Fourier modesM used for the stream function approximation. The reader may note that the
magnitude of contributions of the higher modes decreases exponentially. The distributions
of uL(x) andvL(x) over a single period are shown in Fig. 5. Both functions are oscillatory
in x with maxima located close tox=π , i.e., around the bottom of the corrugation. The fact
that the maximum error in enforcement of flow boundary conditions occurs at the bottom
can be explained by noting that all amplitude functions8n, n≥ 1 attain their maxima (in
both real and imaginary parts) at or very near toy=−1. One can expect therefore that
contributions of higher Fourier modes are relatively more important at these particular
locations, and thus the rate of error reduction as a function of the total number of Fourier

FIG. 4. Variations of theL∞-norm (4.3a) of the(x, y) components of velocity vector evaluated at the lower
wall uL = u(x, yL(x)), vL = v(x, yL(x)) as a function of the total number of Fourier modesM used in the calcu-
lations forα= 1.
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FIG. 5. The (x, y)-components of velocity vector evaluated at the lower walluL = u(x, yL(x)), vL =
v(x, yL(x)) for α= 1.0, HL = 0.05 with M = 15 Fourier modes used in the calculations.

modesM would be smaller in the vicinity of the bottom of the corrugation as compared
to its top. This effect is more pronounced for large wavenumbersα due to the fact that
boundary layers appearing in the distributions of8n’s with a sufficiently large indexn are
thinner then the total depth of the wall corrugation 2HL (see Fig. 2).

According to the implementation of boundary conditions (2.8), the Fourier spectrum of
both components of velocity vector evaluated at the wall (see Fig. 5) should not contain
any harmonics of order lower then the number of Fourier modes used in the calculations
(M = 15 in this case). This property of the solution provides a useful test for accuracy and
consistency of the algorithm. Results shown in Fig. 6 confirm that indeed the first 15 Fourier
modes have been eliminated. These can be estimated on the basis of these results that, for the
conditions used in this particular example, calculation withM ≥ 25 modes should provide
results with accuracy of machine arithmetic.

A series of calculations have been carried out in order to demonstrate that the assumed
form of solution (2.6) is sufficiently general, at least for the range of parameters consid-
ered in this work. In principle, the stream function can either contain subharmonics or be
quasiperiodic with respect to thex-variable. Although it is possible that such solutions may
exist in our model problem for certain parameter settings, they have not been found in any
of the test calculations. As an illustration, we shall consider three cases of the same flow
with corrugation amplitudeHL = 0.05 and corrugation wavelengthλx = 2π/3. In case A,
the bottom wall was assumed to have the shape of the principal Fourier mode with the
wavenumberα= 3 and the relevant calculations were carried out usingM = 10 Fourier
modes. In case B, the same shape was assumed to be represented by the second Fourier
mode (the principal mode has the wavenumberα= 1.5), while in case C it was represented
by the third Fourier mode (the principal mode has the wavenumberα= 1). In order to have
fully equivalent representations, the number of Fourier modes used in cases B and C was
M = 20 andM = 30, respectively. The selected representations admitted subharmonics of
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FIG. 6. Fourier spectra of distributions ofuL andvL shown in Fig. 5. The reader may note the absence of the
first 15 modes.

1
2 type in case B and subharmonics of1

3 type in case C. In all three cases calculations were
initiated with three different initial approximations containing all Fourier modes and in all
cases the solution process resulted in equivalent solutions. In cases B and C all subharmon-
ics vanished during the iteration process. Figure 7, which displays the Fourier spectra of
the x-component of velocity vector evaluated at the lower walluL(x), demonstrates that
solutions obtained in all three cases are identical.

The dependence of the boundary error on the shape parametersα and HL , for a fixed
numberM of Fourier modes, has been also investigated. The norm‖uL‖∞ was used as
a measure of the error. Figure 8 illustrates variations of this norm as a function of the
amplitudeHL while Fig. 9 shows variations of this norm as a function of the wavenumber
α. The available results suggest that the error is at the machine accuracy level forHL and
α smaller then certain critical values. Once these values are reached, the error begins to
increase rapidly in a somewhat universal manner. The universal (asymptotic) error behavior
for increasingHL can be approximated by a simple power law formula‖uL‖∞ ≈ HβH

L ,
where the exponentβH depends on the wavenumberα and the number of Fourier modesM
used. The universal (asymptotic) error growth as a function of increasingα can be expressed
by a similar power law, i.e.,‖uL‖∞ ≈αβα , where the exponentβα depends on the amplitude
HL and the number of Fourier modesM used. The available numerical results suggest that
βH ≈M + 2 andβα ≈M + 1. Careful analysis of Figs. 8 and 9 shows that increasing the
number of Fourier modesM delays the onset of the asymptotic error growth (asHL and
α increase), but once the critical values ofHL andα are reached, the error growth is more
rapid. This error behavior suggests a very rapid increase in the strength of nonlinear effects
once a certain threshold inα andHL is reached.

One additional issue might be important from a practical point of view; i.e., how many
modesM should be used in order to capture, say, 99% of the “total information” regarding
the flow field. Before an answer can be given, the concept of “information content” needs to



FLOWS OVER CORRUGATED BOUNDARIES 395

FIG. 7. Fourier spectra of thex-component of velocity vector evaluated at the lower wall,uL = u(x, yL(x)),
calculated for the amplitudeHL = 0.05 and the wavelengthλx = 2π/3, using three different forms of Fourier
expansion. Case A: only basic harmonics are included (α= 3.0,M = 10). Case B: 1/2-subharmonics are admissible
(α= 1.5,M = 20). Case C: 1/3 subharmonics are admissible (α= 1.0,M = 30). The reader may note the absence
of any subharmonics in the solution.

FIG. 8. The L∞-norm (Eq. 4.3a) of thex-component of velocity vector evaluated at the lower wall,
uL = (x, yL(x)), as a function of the amplitudeHL of the wall corrugation, plotted for different values of the
wavenumberα and evaluated using eitherM = 8 (solid lines) orM = 12 (dashed lines) Fourier modes. Since the
expected value is zero, the magnitude of this norm provides a measure of error in enforcement of flow boundary
conditions.
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FIG. 9. The L∞-norm (Eq. 4.3a) of thex-component of velocity vector evaluated at the lower wall,
uL = (x, yL(x)), as a function of the wavenumberα, plotted for different values of the amplitudeHL evalu-
ated using eitherM = 8 (solid lines) orM = 12 (dashed lines) Fourier modes. Since the expected value is zero,
the magnitude of this norm provides a measure of error in enforcement of flow boundary conditions.

be precisely defined. For example, one may consider the kinetic energyEK (M) contained in
the firstM Fourier modes as an appropriate measure, and then the information content can
be defined asI (M) := EK (M)/EK (∞). The symbolEK (∞) denotes the kinetic energy
of the actual solution, which, in general, may not be known. However, one can expect
that the calculated value ofEK (M) converges to a certain limit withM→∞; this limit
can be approximately determined by carrying out calculations for increasingM , until the
difference|EK M)− EK (M − 1)|<ε, whereε is a small, positive number.

Kinetic energy represents only one of many possible measures. A reasonable alternative
is offered, for example, by the mean pressure drop along the corrugated wall. Various other
quantities have also been investigated, leading to the conclusion that the best measure is
offered by quotients based on velocity components. The measures of information content
adopted in this analysis are thus defined as

IU (M) = ‖u‖H (M)

‖u‖H (∞) , IV (M) = ‖v‖H (M)

‖v‖H (∞) , (4.4)

where each component of the velocity field is considered separately, and the norm‖ · ‖H is
defined as

‖D‖H =


2π/α∫
0

 1∫
−1

|D(x, y)|2ω(y) dy

dx


1/2

. (4.5)

The norm (4.5) arises naturally from the mathematical context of the proposed method,
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which involves construction of the solution in the Hilbert space spanned by the set of
functions

BF = {bj,n(x, y) = Tj (y) exp(inαx), j ≥ 0, |n| ≥ 0},

which are orthogonal in the following sense:

〈bj,k, bm,n〉H ≡
2π/α∫
0

 1∫
−1

bj,k(x, y)b?m,n(x, y)ω(y) dy

dx= 0, for j 6= m or k 6= n.

The numerical tests have shown that the “information measures” (4.4) provide more re-
strictive criterion of convergence than those based on either the kinetic energy or pressure
gradient. In other words, high information content in the sense of (4.4) guarantees that
physically relevant characteristics of the flow field are calculated with high accuracy. In
should be noticed that none of the possible definitions of the quotientsI (M) may guar-
antee thatI (M) is monotonically increasing and upper bounded by unity, which means
that IU (M) and IV (M) are not, in a literal sense, information content measures. We have
found, however, that such exceptional cases occur very seldom. Most common behavior
is illustrated in Fig. 10, which displays the quotientsIU (M) and IV (M) calculated for the
amplitudeHL = 0.02 and for several values of the wavenumberα. Similarly, Fig. 11 shows
the quotientsIU (M) andIV (M) calculated for the wavenumberα= 10 and different values
of the amplitudeHL . In both cases the same tendency is observed; i.e., an increase of either
α or HL increases the strength of nonlinear effects and necessitates use of a larger number
of Fourier modes. The reader may use these graphs to estimate the number of Fourier modes
M required to guarantee that the solution captures at least, say, 95% of the total information
content.

All tests discussed so far have been carried out for the lower wall represented by a single
Fourier mode (see Eq. (4.1)). The formulation of the algorithm is, however, general and it
can deal with shapes of both walls represented in terms of an arbitrary number of Fourier
modes. Figure 12 displays streamline pattern associated with the flow in a channel whose
walls have the shape given by

yL(x) = −0.85+ [(0.04 · eiαx + 0.01 · ei 2αx + 0.025· ei 3αx)+ c.c.],

yU (x) = −0.85+ [(0.0125· eiαx + 0.0375· ei 2αx + 0.025· ei 3αx) · ei 2π/3+ c.c.],

with the wavenumberα= 1.0 and calculated usingM = 24 Fourier modes.

5. LIMITATIONS OF THE ALGORITHM

The flow problem is well posed in the flow domain, but its nature in the extended com-
putational domain is not known. The proposed algorithm relies on the assumption that the
solution to the flow problem can be extended to a larger computational domain and that
this extension is sufficiently smooth. If this extension contains singularities, the proposed
method will fail to deliver the expected accuracy and, in fact, it may fail to converge at all.
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FIG. 10. The information content quotientsIU (a) and IV (b) defined by Eq. (4.4) as a function ofα for
HL = 0.02.

The potential difficulties can be illustrated using two simple examples. We shall begin
with a one-dimensional boundary value problem

x2F ′′(x)+ x F′(x)− F(x) = 0, F(0.1) = A, F(1) = B, (5.1)

whose solution in the form

F(x) = 10

99
(10B− A)x + 1

99
(10A− B)

1

x
(5.2)
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FIG. 11. The information content quotientsIU (a) andIV (b) defined by Eq. (4.4) as a function ofHL for
α= 10.0.

is infinitely smooth in [0.1, 1]. We wish to solve this problem by approximating the solution
in the extended domain [0, 1] and imposing condition atx= 0.1 as an internal condition
rather then as a boundary condition. Obviously the solution cannot be smoothly extended
to [0, 1] because of singularity atx= 0. The smooth extension is only possible for the very
special case ofB= 10A, but even then an arbitrary small change of the boundary data would
create a singularity in the extended solution atx= 0. This means that a method based on
spectral discretization in the extended domain should fail to converge.

The second example is more closely connected to the flow problem discussed in this
study and involves the Dirichlet problem for the Laplace equation formulated for the
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FIG. 12. Flow pattern in the channel with the lower wall located atyL =−0.85+ [(0.04eiαx + 0.01ei 2αx +
0.025ei 3αx)+ c.c.] and the upper wall located atyU = 0.85+ [(0.0125eiαx + 0.0375ei 2αx + 0.025ei 3αx)ei 2π/3+ c.c.]
for Re= 20.

x-periodic domain shown in Fig. 1b. The boundary conditions are assumed to be periodic
and the problem can be stated as

1F = 0 in D, F(x,−1) = gL(x), F(x, yU (x)) = gU (x),
(5.3)

F(0, y) = F(2π, y) for y ∈ [−1, 1],

where, for simplicity, the lower wall is assumed to be flat. In the above,D denotes flow
domain. We shall consider extended, regular computational domain [0, 2π ]× [−1, 1] and
seek the approximate solutionFe in the form of Fourier–Chebyshev series, i.e.,

Fe(x, y) =
∑

n

∑
k

(cn,k cos(nx)+ sn,k sin(nx))Tk(y). (5.4)

We shall denote the difference between the extended and original domains asD?. Restriction
of Fe (defined inD+ D?) to D represents a solutionF of the original problem. We shall
demonstrate that the above representation of the solution is, in general, not acceptable.

Consider a functionF that is harmonic everywhere inD, but the extension of which is
singular at an arbitrarily selected point inD?. Because of the presence of singularity, this
function cannot be represented by the Fourier expansion (5.4). The reader may note that
Eq. (5.4) (with properly selected coefficients) represents nevertheless a certain harmonic
function in D+ D?. It can be shown that function of this form can approximateF in
D with a prescribed accuracy (in the sense of sup-norm). This approximation may not
be very accurate inD? but this is irrelevant. To see that, map conformally the extended
domain in such a way thatD maps onto an annular region. The functionF , expressed in
new variables, can be expanded in a Laurent series whose upper radius of convergence
is determined by the distance between the mapped singularity and the origin. Appropriate
truncation of these series from above produces approximation ofF with the desired accuracy
in the image ofD in the transformed domain. The resulting harmonic functionF ′ can be
extended arbitrarily far from the origin. The inverse mapping sendsF ′ back to D+ D?

where it approximates functionF in D (but not in D?) with the same accuracy. SinceF ′
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is harmonic in the entire extended domain, its representation in the form (5.4) exists and
is spectrally convergent. SinceF ′ approximatesF in the whole extended domain, it must
grow very rapidly inD?; this growth is more rapid when the error of the approximation is
reduced. This means that the rate of convergence of the Fourier–Chebyshev series, despite
the fact that it is spectral, is very slow, particularly in those parts ofD? which are located
in the vicinity of the singularity. Increased accuracy requirements imply slower rate of
convergence and necessitate use of an extremely large number of terms. This may make the
method impractical in applications.

The above examples illustrate situations when the proposed algorithm fails. General
conditions that guarantee the required smoothness of the extended solution of the Navier–
Stokes equations, and thus guarantee appropriate performance of the proposed algorithm,
are not known. In all cases considered in the present study, no failure has been encoun-
tered. Since the failure of the algorithm manifests itself either by the loss of convergence
or by a very slow convergence, the reliability of the results can be tested a posteriori us-
ing convergence studies. If the algorithm is diagnosed as unreliable for a particular flow
problem, one has no choice but to limit calculations to the physical domain and to rely
on either a numerical coordinate generation or an analytical mapping that transforms the
corrugated physical domain into a regular computational domain. Such tests have been done
in the present study and the results obtained agreed with those produced using the direct
approach.

6. CONCLUSIONS

An algorithm for a direct, spectrally accurate solution of the Navier–Stokes equations in
domains with corrugated boundaries has been proposed. The algorithm eliminates the need
for the coordinate generation and/or premapping required for regularization of the compu-
tational domain in standard implementation of spectral discretizations. The flow problem
is posed for computational purposes as an internal problem rather than a boundary value
problem, with the flow boundary conditions specified along a line that weaves through the
interior of the computational domain. The discretization is based the Chebyshev expansions
in the normal-to-the-wall direction and the Fourier expansions in the direction along the
wall. Flow boundary conditions for each Fourier mode are expressed directly in terms of co-
efficients of Chebyshev expansions by using composite function formulation. The explicit
expressions provided for evaluation of error in enforcement of flow boundary conditions
permit implementation of the algorithm in a self-adaptive mode based on prescribed error
bounds.

Various tests confirm that the algorithm delivers spectral accuracy. The absolute mag-
nitude of the error (when the number of Fourier modes is kept constant) increases with
increase of both the wavenumberα and the amplitudeH of the wall corrugation. This
growth becomes proportional to a certain power ofα andH for a large enoughα andH .
Variations of the error suggest a rapidly increasing strength of nonlinear effects and the
need to use a large number of Fourier modes whenα andH reach a certain threshold.

The algorithm relies of the existence of a sufficiently smooth extension of the flow
solution to the complete computational domain. Conditions that guarantee existence of such
an extension are presently not known and caution is advised when applying the algorithm
to new classes of problems.
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